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Introduction 

Diabetes is a prevalent condition that currently has no permanent cure 

and is often referred to as a "silent killer." Effectively managing 

prediabetes can prevent its progression to full-blown diabetes. A lack of 

understanding about this condition can lead to additional complications 

and challenges (1). 

Diabetes is generally classified into three categories: Type I, Type 

II, and gestational diabetes. In Type I diabetes, the immune system 

attacks and damages the insulin-producing cells. In contrast, Type II 

diabetes, which is more common than Type I, arises when the body fails 

to respond effectively to the insulin that is produced, leading to elevated 

blood sugar levels (2,3).  

Diabetes symptoms can manifest suddenly, often characterized by 

increased thirst, frequent urination, blurred vision, fatigue, and 

unexplained weight loss. Over time, diabetes can damage various 

organs, including the heart, eyes, kidneys, nerves, and blood vessels, 

thereby increasing the risk of severe health complications, such as heart 

attacks, strokes, and kidney failure. Additionally, diabetes is associated 

with complications like vision impairment and foot ulcers, which may 

lead to amputation, earning it the moniker "silent killer" (2-5).  

In 2014, approximately 8.5% of the global adult population was 

affected by diabetes, which poses a significant public health concern. 

By 2019, this condition was directly responsible for 1.5 million deaths, 

particularly among individuals under the age of 70. The mortality rate 

attributed to diabetes increased by 3% between 2000 and 2019, with a 

notable rise of 13% in lower-middle-income countries. On a positive 

note, there was a global decrease of 22% in the likelihood of premature 

death caused by diabetes and other noncommunicable diseases from 

2000 to 2019 (5).  

Recent studies demonstrate that approximately 80% of 

complications related to Type 2 diabetes can be prevented or delayed 

through early identification and intervention for at-risk individuals. 

Advanced data analysis methods, such as data mining and machine 

learning, offer promising opportunities for identifying those at risk. 

Various techniques in data mining and machine learning have been 

developed and implemented to improve the diagnosis and management 

of diabetes (6-12).  

Various approaches, including decision trees (DTs), neural networks 

(NN), support vector machines (SVMs), and ensemble methods, have 

emerged in the fields of data mining and machine learning. These 

methodologies are employed to analyze a diverse array of data, such as 

medical records, genetic information, lifestyle factors, and clinical 

markers. Their objective is to detect patterns and variables related to 

diabetes and its associated adverse effects. By utilizing advanced data 

analysis techniques, we have made remarkable progress in the early 

detection and management of individuals at risk for diabetes. These 

approaches substantially contribute to interpreting widespread datasets, 
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uncovering processes and potential risk factors, and proposing feasible 

interventions. Finally, they contribute to improving diabetes care and 

reducing associated adverse effects (6-12).  

In this study, we present a new machine-learning model designed to 

improve the accuracy of diabetes prediction through a novel approach 

for handling missing values and a classification method. The paper 

begins with an overview of previous research studies on the PIMA 

dataset in Section 2, which discusses various methodologies employed 

by other researchers. Section 3 presents a comprehensive analysis, 

starting with clustering and outlining our proposed methodology. 

Section 4 introduces the dataset, investigates missing value imputation 

(MVI), and assesses alternative classification techniques. In Section 5, 

we analyze how the MVI approach and the proposed classifier elevate 

performance. 

In this section, we review the existing literature related to the subject in 

order to analyze and differentiate their methodologies from the approach 

presented in this study. Previous research has proposed a variety of 

methods.  

Rajni and Amandeep employed the recursive Bayesian (RB) 

algorithm in their research to predict the risk of diabetes, utilizing the 

PIDD as their primary data source. Their proposed method achieved an 

accuracy rate of 72.9% (13). 

Lella et al. proposed a predictive model classified as an A-type 

unorganized Turing machine (UTM), which functions through a system 

of combinational NAND gates. Their model achieved an accuracy rate 

of 80.1% on the PIMA Indians Diabetes Database (PIDD) (14).  

Benarbia conducted a study utilizing four distinct machine learning 

algorithms: Logistic regression (LR), DT, random forest (RF), and SVM 

for data modeling. The research involved implementing these 

algorithms on both scaled and unscaled datasets. Among all the 

algorithms employed, the highest accuracy of 82% was achieved by the 

LR algorithm on the PIMA dataset (15).  

Huang and Ruodi utilized machine learning techniques on the PIDD 

to predict diabetes in individuals. Their study concluded that the extreme 

gradient boosting algorithm was the most effective model, exhibiting an 

accuracy rate of 82.29% (16).  

Chang et al. analyzed the PIDD using three machine learning 

algorithms: the J48 DT, RF, and naïve Bayes (NB). Their research 

revealed that the RF algorithm exhibited the highest performance, 

achieving an accuracy rate of 79.57% (17).  

Alam et al. employed a variety of algorithmic techniques, including 

artificial neural networks (ANN), RF, and k-means clustering for their 

analysis. Among these methodologies, the ANN yielded the most 

favorable results, achieving an accuracy of 75.7% (18).  

Singh and Singh utilized the NSGA-II-Stacking approach, an 

advanced method that demonstrates superiority over individual 

machine-learning techniques and traditional ensemble tactics. Their 

proposed system excels in performance assessment, achieving an 

accuracy of 83.8% (19).  

Maniruzzaman et al. employed several classification techniques, 

including linear discriminant analysis (LDA), quadratic discriminant 

analysis (QDA), and NB. They also adapted Gaussian process-based 

classification techniques to enhance the accuracy of diabetes diagnosis, 

achieving an accuracy rate of 81.97% (20). 

Kumari et al. conducted an investigation utilizing various machine 

learning models, including RF, LR, and NB. These models were 

integrated into a soft voting classifier to effectively classify and predict 

diabetes. To enhance data quality, the researchers applied essential 

preprocessing methods, such as replacing missing attribute values with 

their medians. The accuracy of their proposed method was 79.04% when 

evaluated on the PIMA dataset (21).  

Rajendra and Latif employed various methods, including LR and 

Max Voting, to evaluate accuracy across diverse scenarios using two 

datasets, one of which was the PIMA Indian dataset. The highest level 

of accuracy achieved with the PIMA dataset was 78%, utilizing the Max 

Voting method (22).  

Saxena et al. employed feature selection and data preprocessing 

techniques to improve the classification process. They implemented 

several classification algorithms, including K-nearest neighbors (KNN), 

RF, DTs, and multilayer perceptron (MLP). Their approach culminated 

in an accuracy of 79.8% when tested on the PIMA dataset using RF (23).  

Tiggaa and Shruti employed various classification methods, 

including LR, KNN, SVM, NB, DT, and RF. Among these classifiers, 

the Random Forest algorithm demonstrated the most robust 

performance, achieving an accuracy rate of 75% when applied to the 

PIMA dataset (24).  

Chang et al. conducted an analysis of the PIDD using three distinct 

machine learning models: J48 DT, RF, and NB. The Random Forest 

model exhibited the highest performance, achieving an accuracy rate of 

79.57% (25).  

Jackins et al. employed the NB and RF classification algorithms to 

predict clinical diseases. The highest level of accuracy, 74.46%, was 

achieved using the RF algorithm on the PIMA dataset (26).  

Prior studies have highlighted the importance of addressing missing 

data as a critical step in classification methods due to the frequent 

occurrence of missing values in the PIMA dataset. The reviews 

summarized in Table 1 focus on the use of feature selection and MVI 

methods when working with the PIMA dataset. 

Table 1. Summary of related works on PIMA dataset 

Authors Year FS and MVI Classification Comments 

Rajni and Amandeep (13) 2019 FS: - MVI: Mean SVM, DT, NB, RB-Bayes 
RB-Bayes with 72.9% 

accuracy 

Luigi Lella et al. (14) 2022 FS: - MVI: Deleted 
LR, RF, KNN, DT, RB-Bayes, 

EBBM-based UTM 

EBBM-based UTM 

with 80.1% accuracy 

Meriem Benarbia (15) 2022 FS: Statistical correlations MVI: KNN LR, DT, RF, SVM LR with 82% accuracy 

Huang and Ruodi (16) 2021 FS: - MVI: Median and mean LR, DT, RF, KNN, SVM, XGBoost 
XGBoost with 82.29% 

accuracy 

Victor Chang et al. (17) 2023 
FS: k-means, PCA and importance 

ranking MVI: Median 
DT, RF, NB 

RF with 79.57% accuracy by 
only using MVI 

Talha Mahboob Alama et al. (18) 2019 FS: PCA MVI: median ANN, RF, k-mean ANN with 75.7% accuracy 

Namrata Singh and Pradeep 

Singh (19) 
2020 FS: - MVI: Median SVM, DT, NSGA-II-Stacking 

NSGA-II-Stacking 

with 83.8% accuracy 

Md. Maniruzzaman et al. (20) 2017 FS: - MVI: - LDA, QDA, NB, GPC GPC with 81.97% accuracy 

Saloni Kumari et al. (21) 2021 FS: - MVI: Median 
LR, DT, RF, KNN, 

SVM, NB, soft voting classifier 

Soft voting classifier 

with 79.08% accuracy 

Priyanka Rajendra and Shahram 
Latif (22) 

2021 FS: Weighted Avg MVI: mean 
LR, feature selection, Max Voting, 

Stacking 
Max Voting with 
77.83% accuracy 

Roshi Saxena et al. (23) 2022 
FS: Correlation based, PCA, information 

gain attribute selection MVI: Mean 
KNN, RF, DT, MLP RF with 79.83% accuracy 

Neha Prerna Tiggaa and Shruti 
Garga (24) 

2020 FS: - MVI: - 
LR, KNN, SVM, DT, 

RF, NB 
RF with 75% accuracy 

Victor Chang et al. (25) 2022 
FS: PCA, k-means clustering and 

importance ranking MVI: Median 
DT, RF, NB 

RF with MVI: 79.57% 

accuracy 

V. Jackins et al. (26) 2020 FS: Correlation coefficient MVI: Set null RF, NB RF with 74.46% accuracy 
FS: Feature Selection; MVI: Missing Value Imputation; KNN: K-Nearest Neighbors; PCA: Principal Component Analysis; SVM: Support Vector Machine; DT: Decision Tree; NB: 

Naïve Bayes; RB-Bayes: Recursive Bayesian; LR: Logistic Regression; RF: Random Forest; ANN: Artificial Neural Networks; NSGA: Non-dominated Sorting Genetic Algorithm; 

LDA: Linear Discriminant Analysis; QDA: Quadratic Discriminant Analysis; GPC: Granite Powder Concrete; MLP: Multilayer Perceptron; EBBM-based UTM: Evolutionary Bait 

Balls Model-based Unorganized Turing Machine; KNN: K-Nearest Neighbor 
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Methods 

Previous studies have emphasized the importance of addressing missing 

data as a critical step in classification methods due to the frequent 

occurrence of missing values in the PIMA dataset. This research paper 

proposes a novel semi-supervised approach for predicting diabetes. 

Initially, a data imputation model utilizing clustering techniques is 

introduced to improve the handling of missing values. An integration of 

clustering and classification methods is then proposed to predict 

diabetes status. The application of this semi-supervised preprocessing 

and classification approach has culminated in enhanced prediction 

performance. 

Our method consists of two main stages: data preprocessing and 

classification. The dataset contains numerous missing values; therefore, 

proposing an effective approach to address this issue can significantly 

enhance the subsequent stages. Furthermore, the classification approach 

that is both effective and well-designed for the specific data warrants 

careful consideration.  

Figure 1 illustrates the schematic of the proposed semi-supervised 

approach. The subsequent sections of this part of the paper will provide 

in-depth explanations and analyses of each stage, facilitating a 

comprehensive understanding of the proposed methodology. 

The following section outlines the utilized techniques and machine 

learning algorithms employed, followed by a comprehensive 

introduction of the proposed method.  

Utilized techniques and machine learning models 

The research paper employs various machine learning models to predict 

diabetes. The models utilized in this study include the Gaussian mixture 

model (GMM) and RF. Each model is briefly introduced below. 

Gaussian Mixture Model: GMM clustering is a probabilistic model that 

assumes data is generated from a mixture of Gaussian distributions. It is 

widely utilized for clustering and density estimation tasks. A Gaussian 

Mixture Model is an unsupervised clustering method that identifies 

clusters by estimating probability densities through the Expectation-

Maximization process, resulting in ellipsoidal shapes. In the Gaussian 

Mixture Model, each cluster is defined as a Gaussian distribution 

characterized by both the mean and covariance, in contrast to K-Means, 

which considers only the mean. GMMs possess this characteristic, 

enabling them to provide a more accurate quantitative assessment of 

fitness based on the number of clusters. While K-Means is well-known 

for its simplicity and computational efficiency, it may not fully capture 

the inherent diversity of the data. Gaussian Mixture Models excel at 

identifying complex patterns and organizing them into coherent, 

uniform elements that accurately reflect the underlying patterns present 

in the dataset (27). 

Random Forest: The RF algorithm is a supervised learning technique 

that constructs an ensemble of DT. Each DT in the ensemble is trained 

on a random subset of the data, and the final prediction is determined 

through majority voting or averaging. RF can effectively handle high-

dimensional data and is resistant to overfitting. It leverages the 

collective decisions of multiple DTs to deliver accurate and reliable 

predictions in both classification and regression scenarios. The 

ensemble approach, combined with random feature sampling, is 

essential for creating diverse and efficient models (28). 

The proposed semi-supervised approach for diabetes prediction 

The proposed semi-supervised approach for forcasting diabetes consists 

of two main stages: Data preprocessing and classification. Given the 

frequent occurrence of missing data in the PIMA dataset, the 

implementation of a clustering-based data imputation model is essential 

for resolving this challenge. This initial step improves the quality of the 

dataset by imputing missing values using a robust clustering 

mechanism, thereby preparing the data for next classification tasks. 

Following the data preprocessing stage, an innovative integration of 

clustering and classification techniques is proposed to predict diabetes 

status. By leveraging the strengths of both clustering and classification, 

this approach aims to improve the accuracy and reliability of diabetes 

prediction. The application of this semi-supervised preprocessing and 

classification approach has yielded promising results in terms of 

predictive performance, as demonstrated in the experimental evaluation. 

The PIMA dataset was utilized to test the proposed approach. It 

includes various features such as glucose levels, blood pressure, skin 

thickness, insulin levels, body mass index (BMI), age, and diabetes 

status for 768 women, some of which contain missing values. A 

clustering-based method is recommended for imputing these missing 

values, considering their critical importance in the dataset. The dataset 

comprises both diabetic and non-diabetic classes, and the primary 

challenge lies in accurately predicting these classifications. 

To ensure consistent scaling of the variables, normalization has been 

applied to the values. However, because zero values (As missing data) 

disrupt the normalization of features that should not include zero values, 

this process has been carried out without accounting for those zeros. 

Equation 1 is used to normalize the features. 
 

𝑋′ =  
𝑋 −  𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛
 (1) 

Where 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 represent the highest and lowest values of 

the feature, respectively. 𝑋 also represents the original value of the 

feature, while 𝑋′ refers to its normalized value. 

The Proposed Clustering-Based Unsupervised Approach for 

Missing Value Imputation 

There are several methods available to address missing values in 

datasets. One commonly used strategy for handling missing values in a 

dataset is to remove all records that contain missing values in at least 

one feature. However, this approach can culminate in the loss of 

important records and valuable information, particularly when applied 

to the PIMA dataset.  

Another commonly used approach to address missing values is to 

impute them using the mean or median. However, it is important to note 

that these methods can potentially introduce bias into the data (29).  

Addressing missing values is an essential step in the preprocessing 

of data, particularly when working with datasets that contain a 

substantial number of missing entries. 

In this paper, we propose a novel clustering-based unsupervised 

approach for imputing missing values. The first step involves 

segregating the records without any missing values, referred to as 

reference data, from the datasets. These records will serve as references 

for imputing missing values in the remaining records that contain one or 

more missing values.  

In the first phase, all reference data are clustered using GMM 

algorithm. One of the advantages of utilizing this algorithm is its 

capability to effectively distinguish between clusters with non-spherical 

shapes.  

 
Figure 1. The proposed framework for diabetes prediction 
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The clustering analysis was conducted using various numbers of 

clusters (k) and the findings are detailed in the results section. A key 

measure for evaluating the quality of clustering is ensuring that samples 

are sufficiently separated, resulting in low variability between diabetic 

and non-diabetic patients within each cluster. Essentially, it should be 

possible to form clusters in which a majority of individuals belong to 

either the diabetic or non-diabetic category.  

By examining various clusters, it was observed that a significant 

proportion of individuals without diabetes were grouped together in one 

cluster. In contrast, individuals with diabetes were not distinctly 

categorized into a separate cluster; instead, they were distributed among 

different groups alongside non-diabetic individuals. Therefore, the 

clusters resulting from the analysis using two clusters (k=2) are the most 

appropriate choice for the proposed MVI method. The details of Cluster 

1 and Cluster 2, derived from the clustering with k=2, are presented 

below. 

Cluster 1 consists of 87% non-diabetic individuals and 13% diabetic 

individuals (𝐶1 with the majority of samples being non-diabetic (𝑥𝑛𝑑) 

and a smaller number of samples being diabetic (𝑥𝑑), 𝑥1(i) ∈ 𝐶1, 

i=1,2,...,204). 

Cluster 2 consists of 45% non-diabetic and 55% diabetic individuals 

(𝐶2 represented by a mixture of 𝑥𝑛𝑑s and 𝑥𝑑s, 𝑥2(i) ∈ 𝐶2, i=1,2,...,188). 

Cluster 1 primarily consists of individuals without diabetes, while 

the Cluster 2 includes a mix of individuals with and without diabetes. 

This indicates a greater variability in the composition of diabetic and 

non-diabetic patients. 

The next phase involves filling in missing values for instances that 

have one or more features with missing data (𝑥𝑚𝑖𝑠𝑠). This can be 

accomplished by utilizing information from two clusters: Cluster 1 (𝐶1) 

and Cluster 2 (𝐶2). The analysis commences with records that contain 

only one missing value. After imputing the missing value for each 

record, the record is assigned to a cluster (𝐶1 or 𝐶2) according to its class 

variable. This process enhances the reference data and improves the 

quality of imputing missing values for other records. Subsequently, the 

missing values in records with two missing values can be filled in and 

assigned to one of the clusters. This procedure continues for records 

with an increasing number of missing values, following a sequential 

order. 

To achieve this, two distinct scenarios have been developed as 

follows: Scenario 1 focuses on the MVI for individuals diagnosed with 

diabetes (class of 𝑥𝑚𝑖𝑠𝑠 = diabetic), while Scenario 2 deals with the MVI 

for non-diabetic individuals (class of 𝑥𝑚𝑖𝑠𝑠 = non-diabetic).  

Scenario 1: Imputing missing values for a diabetic patient’s record 

Step 1: Initially, the distances between the record 𝑥𝑚𝑖𝑠𝑠 and all diabetic 

data points in Cluster 2 (𝑥𝑑s ∈ 𝐶2), which contains a higher number of 

diabetic patients, are calculated using the Euclidean method. This 

calculation considers only valid columns with non-missing values from 

the record 𝑥𝑚𝑖𝑠𝑠. After arranging the records according to their 

distances, we choose 𝐿1 (𝐿1=10 in proposed method) closest ones to 

𝑥𝑚𝑖𝑠𝑠 as 𝑧𝑗  (j = 1, 2, ..., 𝐿1). 

Step 2: In this step, the distances are calculated between the selected 𝐿1 

records (𝑧𝑗  (j = 1, 2, ..., 𝐿1)) and the center of Cluster 1, which contains 

a higher number of non-diabetic patients. The record that has the 

maximum distance from the center of Cluster 1 among these 𝐿1 records 

is identified as 𝑥𝑟𝑒𝑓.  

Step 3: The missing values in record 𝑥𝑚𝑖𝑠𝑠 are then imputed using the 

corresponding values from the 𝑥𝑟𝑒𝑓 record. 

Scenario 1 aims to improve the quality of diabetic records with 

missing values by utilizing information from both diabetic and non-

diabetic clusters. This scenario aligns record 𝑥𝑚𝑖𝑠𝑠  more closely with 

individuals diagnosed with diabetes, who are predominantly found in 

Cluster 2. Conversely, we seek to distance these records from non-

diabetic individuals, who are mainly present in Cluster 1. 

Scenario 2: Imputing missing values for a non-diabetic patient’s 

record 

Step 1: Due to the dispersion of non-diabetic records in Clusters 1 and 

2, the distances between the record 𝑥𝑚𝑖𝑠𝑠  and all non-diabetic data 

points in Cluster 1 (all 𝑥𝑛𝑑  ∈ 𝐶1 ) as 𝑑1 and Cluster 2 (all 𝑥𝑛𝑑  ∈ 𝐶2) as 

𝑑2 are calculated. This calculation considers only valid columns with 

non-missing values of record 𝑥𝑚𝑖𝑠𝑠. The cluster closest to the record 

𝑥𝑚𝑖𝑠𝑠 (either Cluster 1 or Cluster 2) is specified using the calculated 

distances. The cluster that is closest to the record 𝑥𝑚𝑖𝑠𝑠  is deemed the 

most appropriate for identifying and replacing the missing value of that 

particular record. 

Step 2: If 𝑥𝑚𝑖𝑠𝑠 is closer to Cluster 2 (𝑑2 < 𝑑1): After evaluating the 

distances between the record 𝑥𝑚𝑖𝑠𝑠 and all non-diabetic records in 

Cluster 2 (𝑥𝑛𝑑 ∈ 𝐶2), the 𝐿2 (𝐿2=10 in proposed method) nearest records 

are identified as 𝑝𝑗 (j = 1, 2, ..., 𝐿2). Then, the distances between these 

𝐿2 records and the centroid of Cluster 1 are calculated. The record with 

the minimum distance to the center of Cluster 1 is selected as the 

reference for the MVI for record 𝑥𝑚𝑖𝑠𝑠. The objective of this process is 

to move 𝑥𝑚𝑖𝑠𝑠  closer to Cluster 1, which consists of a higher number of 

non-diabetic individuals, while simultaneously distancing from Cluster 

2, which contains a significant number of diabetic individuals. 

If 𝑥𝑚𝑖𝑠𝑠 is closer to Cluster 1 (𝑑1 < 𝑑2): After evaluating the 

distances between the record 𝑥𝑚𝑖𝑠𝑠 and all non-diabetic records in 

Cluster 1, the 𝐿3 (𝐿3=10 in proposed method) nearest records are 

identified as 𝑞𝑗 (j = 1, 2, ..., 𝐿3). Then, the distances between these 𝐿3 

records and the centroid of Cluster 2 are calculated. The record that has 

the maximum distance from the center of Cluster 2 is selected as the 

reference (𝑥𝑟𝑒𝑓) for the MVI for the record 𝑥𝑚𝑖𝑠𝑠. The objective of this 

process is to move 𝑥𝑚𝑖𝑠𝑠 closer to Cluster 1, which consists of a higher 

number of non-diabetic individuals, while simultaneously distancing 

from Cluster 2, which contains a significant number of diabetic 

individuals. 
In summary, the proposed approach for imputing missing values 

involves clustering the records based on specific criteria that can 

effectively differentiate between non-diabetic and diabetic records. It 

then selects the appropriate cluster and employs a systematic method to 

fill in missing values in records based on their proximity to specific 

clusters. The proposed scenarios are illustrated in Figure 2. 

The computational cost of the MVI method is predominantly 

influenced by the distance calculations between the records with 

missing values and other records within the clusters. This is followed by 

sorting operations to identify the nearest neighbors and additional 

computations involving distances from the cluster centroids. The overall 

computational complexity of the method is approximately 𝑂 (NlogN), 

where 𝑁 represents the total number of records. While this complexity 

makes the approach suitable for small to moderately sized. 
datasets, its quadratic growth in 𝑁 poses scalability challenges for 

larger datasets. Consequently, while the method is practical for smaller 

datasets, it would benefit from optimization to ensure efficiency when 

applied to larger datasets. 

The proposed semi-supervised classifier method 

After imputing the missing values, a comprehensive dataset without any 

gaps is achieved. The dataset has been initially partitioned into a train 

dataset (𝑥𝑡𝑟𝑎𝑖𝑛) and test dataset (𝑥𝑡𝑒𝑠𝑡); 70% of the dataset has been 

allocated for the train dataset, and 30% for the test set. 

Performing cluster analysis on the train dataset: To initiate the 

algorithm, records are grouped into clusters using Gaussian Mixture 

Models, with a range of 2 to 5 clusters. Next, we determine the optimal 

number of clusters to accurately differentiate between diabetic and non-

diabetic records. Based on the results, we observe that dividing the 

records into three clusters (𝑁𝑐 = 3) in the PIMA dataset leads to fewer 

mixed clusters. The first cluster is referred to as the" impure" cluster 

(𝐶1) which contains an approximately equal number of both diabetic and 

non-diabetic records. The second cluster is referred to as the" non-

diabetic" cluster (𝐶2), which mainly includes individuals without 

diabetes, and the" diabetic" cluster (𝐶3), consisting primarily of diabetic 

individuals. 
Label assignment to a test record (𝒙𝒕𝒆𝒔𝒕): The distances between the 

test record and all records of the non-diabetic (𝐶2) and diabetic (𝐶3) 

clusters are calculated. The closest record from each cluster is then 

chosen, the minimum distance of xtest to 𝐶2 (𝑑1) and also the minimum 

distance to 𝐶3 (𝑑2) are calculated. In order to validate the decision of 

assigning a record to a cluster at this stage, a threshold limit was 

considered for the distance between the record and the cluster center. If 

the test record’s distance to the nearest cluster record is within the 

threshold limit (min{𝑑1, 𝑑2} < threshold), it can be assigned a label 

based on its cluster, if 𝑑1 < 𝑑2 the label of xtest is considered non-

diabetic (𝑥𝑡𝑒𝑠𝑡: non-diabetic), otherwise (𝑑1 > 𝑑2) is considered diabetic 
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(𝑥𝑡𝑒𝑠𝑡: diabetic). If min {𝑑1, 𝑑2} > threshold, the algorithm will not 

assign any label to the record and place it in the rejected records. 

Lastly, the RF algorithm was utilized to classify all the data that had 

previously been rejected. The algorithm was trained using the data from 

the impure cluster (𝐶1). 

The algorithm was chosen due to its outstanding performance 

compared to other algorithms when evaluated on the dataset and in 

previous research reviews. The comparative results of various 

algorithms are presented in Evaluation section. Additionally, the 

decision to use the data from the impure cluster for training the RF 

algorithm is based on the assumption that data not assigned to a specific 

cluster is likely to share similarities with that cluster (𝐶1), as it did not 

demonstrate sufficient proximity to the two primary clusters. Therefore, 

by incorporating the ambiguous cluster data into the training of the RF 

aTAtlgorithm, it is anticipated that more accurate and reliable 

classifications can be achieved for the rejected records. The flow 

diagram for the proposed semi-supervised classification method is 

illustrated in Figure 3.  

The computational cost of this model is determined by three key 

components: Clustering, distance calculations, and RF classification. 

The clustering process has a computational complexity of 

approximately (𝑁⋅𝑚⋅𝑘⋅𝐼), where 𝑁 denotes the size of the dataset, 𝑚 

indicates the number of features, 𝑘 represents the number of clusters, 

and 𝐼 is the number of iterations. For each test record, the computation 

of distances against the clusters incurs a complexity of (N). The 

classification of rejected records using RF has a complexity of (𝑇⋅𝑑⋅𝑓⋅𝑟), 

where 𝑇 shows the number of trees, 𝑑 denotes the tree depth, 𝑓 indicates 

the number of features, and 𝑟 is the size of the rejected dataset. By 

combining these components, the total computational complexity can be 

represented as (𝑁⋅𝑚⋅𝑘⋅𝐼 + 𝑁 + 𝑇⋅𝑑⋅𝑓⋅𝑟).  

While the method is computationally efficient for moderately sized 

datasets, it may encounter scalability challenges when applied to larger 

datasets, primarily due to the quadratic growth associated with distance 

calculations. However, with appropriate optimizations, the approach can 

be adapted for efficient performance on larger datasets. 

 

 

Figure 2. The proposed approach for missing value imputation 
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Results 

Datasets 

The PIMA Indian dataset utilized in this research comprises information 

from 768 instances of adult women aged 21 and older. This dataset 

includes various features, such as glucose level, blood pressure, skin 

thickness, insulin level, BMI, age, and diabetes status named" outcome" 

which indicates whether an individual has diabetes (1) or does not have 

diabetes (1 or 0). 

Based on the available data, it can be observed that 65.1% of the 

patients in the dataset are categorized as non-diabetic, while 34.9% are 

identified as diabetic. Table 2 provides a description of the PIMA Indian 

dataset. A heat map illustrating the Pearson correlation coefficients for 

all diabetes-related characteristics is presented in Figure 4, 

demonstrating the relationships between the various variables in the 

dataset. 

It is important to acknowledge that certain attributes, like" 

Pregnancy", may contain zero values, while others must not include zero 

values to maintain data validity. The frequency of zero values in the 

features is presented in Table 3. Based on the information in Table 3, it 

is evident that both insulin and glucose have a substantial number of 

missing values. Given the nature of the dataset and the specific 

characteristics of diabetes, it is essential to address these zero values 

appropriately during data preprocessing. 

Evaluation  

The performance of the classification algorithm was evaluated using 

various metrics, such as accuracy, precision, recall and F1-score. These 

metrics will be briefly explained in the following sections. 

Accuracy: This is calculated by dividing the total number of correct 

predictions by the total number of predictions. It can be expressed as 

follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

Precision (Positive Predictive Value (PPV)): This term refers to the 

proportion of true positive (TP) diagnoses of diabetic patients out of all 

samples that the model classified as diabetic, regardless of whether these 

classifications were correct (TP) or incorrect (False positives (FP)). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑃𝑉) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

Recall (Sensitivity Rate): This term is defined as the proportion of 

correctly diagnosed diabetic patients (TP) out of all actual diabetic cases 

in the dataset, including both those correctly identified by the model 

(TP) and those that were missed (False negatives (FN)).  

𝑅𝑒𝑐𝑎𝑙𝑙 (Sensitivity Rate) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

F1-Score: The F1-score is a metric that combines precision and 

recall, taking into account both false positives (FP) and FN. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

Missing value imputation 

In this paper, we introduced a new unsupervised imputation method 

based on clustering. The first step involved separating records without 

missing values (Reference data) from the datasets. These reference 

records were employed to impute missing values in the remaining 

records. 

Initially, all reference data were clustered using the GMM 

algorithm. The clustering analysis was conducted with various numbers 

of clusters (k), and the results are presented in Table 4. One important 

measure for evaluating cluster quality is ensuring adequate separation, 

which minimizes variability between diabetic and non-diabetic patients 

within each cluster. 

Upon examining different clusters, it was observed that a significant 

proportion of individuals without diabetes were grouped together in one 

cluster, while those with diabetes were distributed among different 

 

Figure 3. The flow diagram of the proposed semi-supervised classification method 
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groups alongside non-diabetic individuals. Consequently, two clusters 

(k=2) were deemed most suitable for the proposed MVI method. 

Subsequently, these two scenarios were utilized to fill in the missing 

values in the dataset.  

To evaluate the impact of the proposed method for imputing missing 

values on the accuracy of classification results, various classification 

techniques have been employed alongside different strategies for 

handling missing data.  

A comparison was conducted using various algorithms, including 

SVM, RF, DT and our classification approach. Additionally, different 

data imputation techniques were employed, such as removing records 

with missing values, filling in missing values with the average, and 

utilizing the proposed method for imputing missing values. The results 

of this comparison are presented in Table 5. 

The experimental findings revealed that the proposed MVI method 

for significantly improved the accuracy of these classification 

techniques. 

The proposed classification method 

The PIMA dataset comprises two groups: "Diabetics," referring to 

individuals diagnosed with diabetes, and "non-diabetics," referring to 

those without diabetes. The dataset exhibits an imbalanced class 

distribution, with approximately 65.1% of the records categorized as 

"non-diabetics" and 34.9% categorized as "diabetics."  

To achieve an even distribution of classes in both the train and test 

sets, a balanced sampling method is employed. For this purpose, a 

random selection of 70% of the "non-diabetics" class records and 70% 

from the "diabetics" class is used to create the train dataset. This ensures 

that our training dataset preserves the original class distribution of the 

Table 2. Description of the PIMA Indians diabetes dataset 

Row Feature Description Count Min Max 

1 Pregnancies Number of times pregnant 768 0 17 

2 Glucose Plasma glucose concentration at 2 hours in an oral glucose tolerance test 768 0 199 

3 Blood pressure Diastolic blood pressure 768 0 122 

4 Skin thickness Triceps skin fold thickness 768 0 99 

5 Insulin 2-hour serum insulin 768 0 864 

6 BMI Body mass index 768 0 67.1 

7 Diabetes pedigree function Diabetes pedigree function 768 0.078 2.42 

8 Age Age in years 768 21 81 

9 Outcome Class variable (0 or 1) 768 0 1 

 
 

 
Figure 4. A heat map of Pearson correlation coefficients for all diabetes characteristics 

 
 

Table 3. Number and percentage of missing values for each feature in the PIMA dataset 

Feature Missing values Percentage of missing values 

Glucose 5 0.65 

Blood pressure 35 4.56 

Skin thickness 227 29.56 

Insulin 374 48.7 

BMI 11 1.43 

BMI: Body Mass Index 
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data. The remaining 30% of records, which include both "diabetic" and 

"non-diabetic" entries form the test set. 

This stratified random sampling enables us to maintain the original 

class distribution in both the train and test sets, thereby facilitating 

effective training and evaluation of classification methods for both 

classes. The testing dataset offers an unbiased assessment of the 

classification model’s performance, considering class imbalances that 

are similar to those in the train set.  

The model was implemented using Python 3.11 within the PyCharm 

2022.3.3 development environment. A variety of Python libraries were 

employed to facilitate different aspects of the workflow, including 

openpyxl, Numpy, scikit-learn, Matplotlib, pandas, seaborn, and 

Python's built-in random module for stratified sampling. Each machine 

learning model was evaluated under various hyperparameter 

configurations. The random forest algorithm, with a maximum depth of 

5 and 50 estimators, achieved the best performance during 

hyperparameter tuning. Furthermore, both cross-validation and 

stratified random sampling were employed, with each method being 

conducted five.  

The adjustments to the proposed classification method are detailed 

below. 

Clustering the train dataset: The train dataset is clustered using the 

GMM method with different numbers of clusters (k), ranging from 2 to 

5. This analysis reveals that how the records are distributed among the 

clusters. Moreover, this examination shows the distribution of records 

across the clusters, and each clustering implementation with k clusters 

yields different distributions of " diabetic" and" non-diabetic" records 

within the clusters. This clustering analysis helps us understand the 

underlying patterns within the train dataset and how the" diabetics" and" 

non-diabetics" records are distributed among the clusters. The outcomes 

of clustering implementation with different numbers of clusters are 

presented in Table 6. 

Choosing the optimal clusters: According to the clustering results, the 

train datasets are divided into three clusters (k=3), as illustrated in Table 

6. The second cluster (C_2) contains more "non-diabetic" records and 

the third one (C_3) contains a greater number of "diabetic" records. 

These two clusters are utilized for classification purposes. The first 

cluster (C_1) consists of a mixture of "diabetic" and "non-diabetic" 

records. This heterogeneous cluster is excluded from this stage of the 

classification process, as it does not provide clear guidance for 

classifying the test records. A two-dimensional (2D) plot of the clusters 

is presented is Figure 5 based on Glucose and BMI for better 

visualization. These two variables were chosen due to their significant 

impact on the outcome, as indicated by the heatmap in Figure 4. 

The total number of records in the two clusters-diabetics and non-

diabetics-used as the basis for classification is 366. 

Classification of test data based on two specified clusters: To classify 

the test data, the distances between each test data point and all data 

points within the "diabetic" and "non-diabetic" clusters are calculated. 

The label for the test data is assigned based on the nearest data point 

within these two clusters.  

To further validate these assignments based on distances, a threshold 

is taken into account. If the test data point is closer to the "diabetic" 

cluster and the distance from the test data to this cluster is less than a 

specific threshold, labeled as "diabetics". Similarly, if it is nearer to the 

"non-diabetic" cluster and also meets the distance threshold, it is 

classified as "non-diabetic."  

The experiments were conducted across a range of threshold values 

from 0.1 to 1, and the classification performance was assessed and 

presented in Table 7. 

Choosing the optimal threshold: It is important to identify an optimal 

threshold that minimizes the rate of rejected data while maintaining high 

accuracy. Striking a balance between these factors is essential; therefore, 

we have selected a threshold value of 0.4 in order to achieve a lower 

rejection rate with minimal impact on accuracy.  

Rejection rate of unclassifiable data: Test data points whose distance 

to the nearest "diabetic" or "non-diabetic" category exceeds the 

specified threshold are labeled as "rejected". The classifications of these 

instances become uncertain due to their proximity to the selected cluster 

data points.  

The rejection rate of the algorithm is calculated as the proportion of 

data that could not be classified in the previous stage. These rates for 

different threshold values are computed and presented in Table 7. 

Rejected data points classification: The evaluation of the algorithm 

can be conducted solely on labeled data without considering the rejected 

data points. To improve the efficiency of the proposed algorithm, a 

separate mechanism is also implemented to classify the rejected data.  

According to the experimental results presented in Table 5, the 

random forest algorithm demonstrated superior classification 

performance compared to other machine learning algorithms. 

Consequently, this particular algorithm was selected for classifying 

rejected data points.  

Table 4. Implementation of Gaussian mixture model clusters on records without missing values (Ranging from 2 to 5) 

Number of clusters (k) Clusters Cluster size Number of non-diabetics Number of diabetics 
Percentage of 

non-diabetics 

Percentage 

of diabetics 

2 
1 

2 

204 

188 

177 

85 

27 

103 

87 

45 

13 

55 

3 

1 

2 

3 

204 

4 

184 

177 

1 

84 

27 

3 

100 

87 

25 

46 

13 

75 

54 

4 

1 

2 

3 

4 

183 

25 

5 

179 

159 

19 

2 

82 

24 

6 

3 

97 

87 

76 

40 

46 

13 

24 

60 

54 

5 

1 

2 

3 

4 

5 

7 

7 

177 

19 

182 

2 

6 

82 

13 

159 

5 

1 

95 

6 

23 

29 

86 

46 

68 

87 

71 

14 

54 

32 

13 

 
 

 

Table 5. Evaluation of machine learning algorithm performance utilizing various missing value imputation techniques 

Algorithm Accuracy 

RMV, FAV, PMVI 

Precision 

RMV, FAV, PMVI 

Recall 

RMV, FAV, PMVI 

F1-score 

RMV, FAV, PMVI 

SVM 0.7627, 0.7359, 0.8225 0.6563, 0.6866, 0.8226 0.5526, 0.5349, 0.6296 0.6, 0.6013, 0.7133 

RF 0.7458, 0.7273, 0.8312 0.625, 0.6533, 0.8182 0.5263, 0.5698, 0.6667 0.5714, 0.6087, 0.7347 

DT 0.6949, 0.6883, 0.8052 0.5217, 0.5761, 0.7093 0.6316, 0.6163, 0.7531 0.5714, 0.5955, 0.7305 

Proposed method 0.7373, 0.7261, 0.8478 0.6177, 0.6604, 0.8358 0.5385, 0.4375, 0.7 0.5753, 0.5263, 0.7619 

RMV: Removing records containing Missing Values; FAV: Filling in missing values using the Average Value; PMVI: Proposed Missing Value Imputation 

method; SVM: Support Vector Machine; RF: Random Forest; DT: Decision Tree 
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The unclassified data that has been excluded due to its greater 

distance from the diabetic and non-diabetic clusters is not sufficiently 

similar to be classified within these groups. Therefore, the most 

appropriate data for constructing a classification model for this excluded 

portion is the data from the first cluster (Table 6).  

The first cluster data is utilized to train a random forest algorithm 

and create a classification model for the unclassified data points that 

were rejected, as they are more similar to this cluster than to the diabetic 

and non-diabetic clusters. 

Evaluation of the proposed method: According to the details 

provided, each test data point is classified according to its proximity to 

the "diabetic" and "non-diabetic" clusters. If a data point is not classified 

at this stage, it receives a label from the model generated by the RF 

algorithm. After all test data have been labeled, the performance of the 

proposed algorithm is evaluated by calculating metrics such as accuracy, 

precision, recall, and F1-score. The entire proposed approach achieved 

an accuracy of 84%, as demonstrated in Table 8. 

The proposed algorithm has been implemented five times for 

validation. Each iteration involves dividing the dataset into train and 

test, followed by applying all steps of the proposed algorithm. The 

results of each execution are presented in Table 8 and Figure 6. 

The final accuracy, precision, recall, and F1-score for the algorithm 

are calculated as the average outcomes from five iterations of the 

algorithm. 

Table 6. The implementation of Gaussian mixture model clusters on the train dataset (Ranging from 2 to 5) 

Number of clusters (k) Clusters Cluster size 
Number of 

non-diabetics 

Number of 

diabetics 

Percentage of 

non-diabetics 

Percentage of 

diabetics 

2 
1 

2 

282 

256 

132 

218 

150 

38 

47 

85 

53 

15 

3 

1 

2 

3 

172 

256 

110 

105 

218 

27 

67 

38 

83 

61 

85 

25 

39 

15 

75 

4 

1 

2 

3 

4 

256 

80 

110 

92 

218 

31 

27 

74 

38 

49 

83 

18 

85 

39 

25 

80 

15 

61 

75 

20 

5 

1 

2 

3 

4 

5 

141 

110 

92 

80 

115 

107 

27 

74 

31 

111 

34 

83 

18 

49 

4 

76 

25 

80 

39 

97 

24 

75 

20 

61 

3 

 

 
Figure 5. Visualization of optimal clusters (k=3) 

 

Table 7. The accuracy and the number of labeled and rejected records for proposed method using a range of threshold values from 0.1 to 1 

Threshold 

Accuracy of all the 

data labeled with the 

proposed method 

Accuracy of the data 

labeled with specified 

clusters 

Number of 

labeled 

records 

Number of 

rejected records 

Total 

number of reference 

records 

Rejection rate (%) 

0.1 0.8043 1.0 17 213 230 93 

0.2 0.8087 0.8559 118 112 230 49 

0.3 0.813 0.8166 169 61 230 27 

0.4 0.8043 0.8081 198 32 230 16 

0.5 0.7739 0.7723 224 6 230 3 

0.6 0.7609 0.7588 228 2 230 1 

0.7 - 1 0.7609 0.7609 230 0 230 0 

Re: Repetition; Avg: Average 
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Comparing the proposed method to other methods 

To gain a comprehensive understanding of the efficacy of our method in 

comparison to alternative approaches, we can refer to Tables 9 and 10, 

which provide a detailed analysis. These tables compare the proposed 

method, which employs the GMM and RF, with other classification 

techniques. To further evaluate the performance of the proposed method, 

an additional dataset was utilized alongside the PIMA dataset. The 

selected dataset, the Breast Cancer Wisconsin (Diagnostic) Dataset, 

comprises 569 patient records with 32 features. The target variable, 

diagnosis, indicates whether the cancer is benign (B) or malignant (M). 

The analysis results are summarized in Table 10. 

Table 8. Repeating the proposed method for five times 

 
Accuracy 

test, train, total 

Precision 

test, train, total 

Recall 

test, train, total 

F1 score 

test, train, total 

Re1 0.8478,0.868,0.862 0.8358,0.8462,0.8432 0.7,0.7606,0.7425 0.7619,0.8011,0.7897 

Re2 0.8391,0.8755,0.8646 0.759,0.8418,0.8154 0.7875,0.7926,0.791 0.773,0.8164,0.803 

Re3 0.8435,0.8736,0.8646 0.8143,0.837,0.8307 0.7125,0.7926,0.7687 0.76,0.8142,0.7985 

Re4 0.8304,0.8494,0.8438 0.8154,0.8057,0.8083 0.6625,0.75,0.7239 0.731,0.7769,0.7638 

Re5 0.8391,0.8736,0.8633 0.8772,0.8659,0.8655 0.625,0.7553,0.7202 0.723,0.8068,0.7862 

Avg 0.84,0.868,0.8597 0.8203,0.8393,0.8326 0.6975,0.7702,0.7493 0.7512,0.8031,0.7882 

 

 

Figure 6. The comparison chart of the evaluation criteria of the proposed method for the total, train, and test datasets 
 

Table 9. Comparing the proposed method on the PIMA dataset to other methods 

Authors Year FS MVI Classifier P R Fs Se Sp Acc 

Rajni and Amandeep (13) 2019 - Mean RB-Bayes - - - - - 72.9 

Luigi Lella et al. (14) 2022 - Deleted 
EBBM-based 

UTM 
- - - 60 90.08 80.1 

Meriem Benarbia (15) 2022 Statistical correlations KNN LR 70 60 - - - 82 

Huang and Ruodi (16) 2021 - 
Median and 

mean 
XGBoost 74 76 75 - - 82.29 

Victor Chang et al. (17) 2023 
k-means, PCA and 

importance ranking 
Median RF only with MVI 89.4 - 

85.1

7 
- 75 79.57 

Talha Mahboob Alama et al. (18) 2019 PCA Median ANN 64.9 65.6 65.2 - - 75.7 

Namrata Singh and Pradeep Singh 
(19) 

2020 - Median 
NSGA-II-
Stacking 

- - 89 96 80 83.8 

Md. Maniruzzaman et al. (20) 2017 - - GPC - - - 92 63 81.97 

Saloni Kumari et al. (21) 2021 - Median 
Soft Voting 

Classifier 
73 70 72 - - 79.08 

Priyanka Rajendra and Shahram Latif 
(22) 

2021 Weighted Avg Mean Max Voting - - - - - 77.83 

Roshi Saxena et al. (23) 2022 

Correlation based, 

PCA, Information 
Gain Attribute 

Selection 

Mean RF - - - 80 71 79.8 

Neha Prerna Tiggaa and Shruti Garga 

(24) 
2020 - - RF 84 - 81 79 66 75 

Victor Chang et al. (25) 2022 
PCA, k-means and 

importance ranking 
Median RF only with MVI 89 - 85 - 75 79.57 

V. Jackins et al. (26) 2020 Correlation coefficient Set null RF - - - - - 74.46 

The proposed method 2024 - 
The proposed 

method 

The proposed 

method 
82.03 69.75 

75.1

2 
- - 84 

FS: Feature Selection, MVI: Missing Value Imputation, P: Precision, R: Recall, Fs: F1-score, Se: Sensitivity, Sp: Specificity, Acc: Accuracy; KNN: K-Nearest 

Neighbors; PCA: Principal Component Analysis; RB-Bayes: Recursive Bayesian; LR: Loistic Regression; RF: Random Forest; ANN: Artificial Neural 
Networks; NSGA: Non-dominated Sorting Genetic Algorithm; LDA: Linear Discriminant Analysis; GPC: Granite Powder Concrete; MLP: Multilayer 

Perceptron; EBBM-based UTM: Evolutionary Bait Balls Model-based unorganized Turing machine; KNN: K-Nearest Neighbor 
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The efficiency of the proposed algorithm on the PIMA dataset is 

compared to state-of-the-art algorithms, as illustrated in Table 9. The 

results indicate that the proposed algorithm outperforms the state-of-the-

art algorithms in terms of accuracy. Moreover, Table 10 shows that the 

proposed approach outperformed related techniques on the Wisconsin 

Diagnostic Breast Cancer (WDBC) dataset as well.  
 

Discussion  
The proposed approach accurately predicts categories of diabetic and 

non-diabetic individuals. This section provides an in-depth assessment 

of the influence of each component of the proposed method, 

highlighting their essential roles in achieving optimal outcomes. 

The classifier is initially evaluated without applying a threshold in 

Stage 1 and without a classifier in Stage 2. Two datasets, each employing 

various MVI approaches, were created to evaluate predictions under 

varying conditions. The first dataset imputed missing values for a 

specific feature using the mean value of that feature from records 

belonging to the same class (Diabetic or non-diabetic) as the record with 

the missing value. In contrast, the second dataset utilized a proposed 

method for imputing missing values. The results presented in Table 11 

demonstrate that the clustering-based approach significantly enhances 

predictions for both diabetic and non-diabetic classes, culminating in 

improved performance metrics. 
 

 
A comparison was conducted between the prediction results with 

and without a threshold in Stage 1 of the proposed method for both 

datasets. As shown in Table 11, the implementation of a threshold 

improves the identification of records that are in close proximity, leading 

to enhanced performance. Conversely, without a threshold, there is a risk 

of misclassifying some records due to their dissimilarity.  

Finally, in the second stage of the study, various classification 

methods were evaluated. The findings suggested that the RF algorithm 

would yield superior results. Consequently, data nodes with lower 

similarity to classifier clusters are flagged as rejected and their 

categories are forecasted using the RF algorithm, which demonstrated 

better performance compared to other machine learning techniques, as 

shown in Tables 5 and 11.  

In summary, the proposed approach for addressing missing values, 

along with the suggested classification method, has improved diabetes 

prediction, yielding superior evaluation metrics compared to methods 

that do not incorporate these strategies. This underscores the significant 

benefits derived from their application. 

Conclusion 

In this study, we proposed a semi-supervised predictive model aimed at 

improving the accuracy of diabetes prediction using the PIMA dataset. 

Initially, we employed a clustering-based data imputation model to 

address missing values. The application of GMM to fill in these gaps 

was intended to enhance the integrity of the dataset, thereby providing 

a more reliable foundation for subsequent analytical processes.  

Following the initial data preparation phase, a novel approach that 

combines clustering and classification methods has been proposed for 

predicting diabetes status. The classifier, which incorporates both GMM 

and RF algorithms, demonstrates improved predictive capability in 

identifying diabetes cases.  

The consecutive implementation of these methods culminated in a 

significant accuracy rate of 86% in forecasting diabetes outcomes, 

positioning our developed model as a potential tool for categorizing 

diabetes cases.  

One of the key challenges of the proposed approach is selecting 

optimal clusters, as the performance is highly sensitive to the chosen 

cluster configuration. Additionally, the computational cost of the 

method can pose difficulties when applied to large datasets. However, 

this limitation can be alleviated by employing optimizations, such as 

dimensionality reduction techniques. 

Overall, the proposed algorithm demonstrates promising results, 

outperforming state-of-the-art algorithms in terms of accuracy for 

predicting diabetes. Furthermore, the method has proven effective when 

applied to other datasets, as evidenced by its success on an additional 

dataset tested during this study. Nonetheless, achieving the desired 

outcomes necessitates making well-informed and optimal decisions at 

each stage of the methodology. 
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Table 11. The impact of each component of the proposed approach on the results 

MVC UTS1C CS2 Acc P R Fs Rel 

× × × 0.7044 0.5556 0.75 0.6383 - 

✓  × × 0.826 0.7703 0.7125 0.7403 - 

× ✓  × 0.6783 - - - 0.7091 

✓  ✓  × 0.7478 - - - 0.8431 

✓  ✓  DT 0.8391 0.8116 0.7 0.7517 - 

✓  ✓  SVM 0.8435 0.8235 0.7 0.7568 - 

✓  ✓  RF 0.8478 0.8358 0.7 0.7619 - 

MVC: Missing Value Correction; UTS1C: Using Threshold in Stage 1 of 

Classification; CS2: Classifier in Stage 2; Acc: Accuracy; P: Precision; R: 

Recall; Fs: F1-score; Rel: Reliability; DT: Decision Tree; SVM: Support Vector 

Machines; RF: Random Forest 

Table 10. Comparing the proposed method on the breast cancer dataset to other methods 

Authors Year FS Classifier P R Fs Se Sp Acc 

V. Jackins et al. (26) 2021 - RF - - - - - 92.4 

Bhardwaj et al. (30) 2022 Random RF 95.45 - 95.56 - 94.48 96.24 

Adebiyi et al. (31) 2022 LDA SVM 96.4 - 97.8 95.7 97.8 96.4 

HUANG and CHEN (32) 2021 VIM HCRF 97.32 - - 94.77 98.41 97.05 

The proposed method 2024 - The proposed method 99.18 92.97 95.97 - - 97.08 

FS: Feature Selection; MVI: Missing Value Imputation; P: Precision’ R: Recall’ Fs: F1-score’ Se: Sensitivity; Sp: Specificity; Acc: Accuracy; SVM: Support 
Vector Machine; HCRF: Hierarchical Clustering Random Forest; LDA: Linear Discriminant Analysis; VIM: Variable Importance Measure; RF: Random Forest 
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